8,750 research outputs found

    Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps

    Get PDF
    An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap

    Effects of vortex flaps on the low-speed aerodynamic characteristics of an arrow wing

    Get PDF
    Tests were conducted in the Langley 12-foot low-speed wind-tunnel to determine the longitudinal and lateral-directional aerodynamic effects of plain and tabbed vortex flaps on a flat-plate, highly swept arrow-wing model. Flow-visualization studies were made using a helium-bubble technique. Static forces and moments were measured over an angle-of-attack range from 0 deg to 50deg for sideslip angles of 0 deg and + or - 4 deg

    Pressure distribution on a 1- by 3-meter semispan wing at sweep angles from 0 deg to 40 deg in subsonic flow

    Get PDF
    A 1- by 3-meter semispan wing of taper ratio 1.0 with NACA 0012 airfoil section contours was tested in the Langley V/STOL tunnel to measure the pressure distribution at five sweep angles, 0 deg, 10 deg, 20 deg, 30 deg, and 40 deg, through an angle-of-attack range from -6 deg to 20 deg. The pressure data are presented as plots of pressure coefficients at each static-pressure tap location on the wing. Flow visualization wing-tuft photographs are also presented for a wing of 40 deg sweep. A comparison between theory and experiment using two inviscid theories and a viscous theory shows good agreement for pressure distributions, normal forces, and pitching moments for the wing at 0 deg sweep

    Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds

    Get PDF
    A V/STOL tunnel study was performed to determine the effects of spanwise blowing on longitudinal aerodynamic characteristics of a model using a vectored-over-wing powered lift concept. The effects of spanwise nozzle throat area, internal and external nozzle geometry, and vertical and axial location were investigated. These effects were studied at a Mach number of 0.186 over an angle-of-attack range from 14 deg to 40 deg. A high pressure air system was used to provide jet-exhaust simulation. Engine nozzle pressure ratio was varied from 1.0 (jet off) to approximately 3.75

    Effects of deflected thrust on the longitudinal aerodynamic characteristics of a close-coupled wing-canard configuration

    Get PDF
    The effects of power on the longitudinal aerodynamic characteristics of a close-coupled wing-canard fighter configuration with partial-span rectangular nozzles at the trailing edge of the wing were investigated. Data were obtained on a basic wing-strake configuration for nozzle and flap deflections from 0 deg to 30 deg and for nominal thrust coefficients from 0 to 0.30. The model was tested over an angle-of-attack range from -2 deg to 40 deg at Mach numbers of 0.15 and 0.18. Results show substantial improvements in lift-curve slope, in maximum lift, and in drag-due-to-lift efficiency when the canard and strakes have been added to the basic wing-fuselage (wing-alone) configuration. Addition of power increased both lift-curve slope and maximum lift, improved longitudinal stability, and reduced drag due to lift on both the wing-canard and wing-canard-strake configurations. These beneficial effects are primarily derived from boundary-layer control due to moderate thrust coefficients which delay flow separation on the nozzle and inboard portion of the wing flaps

    Comparison of aerodynamic theory and experiment for jet-flap wings

    Get PDF
    Aerodynamic theory predictions made for a jet flapped wing were compared with experimental data obtained in a fairly extensive series of tests in the Langley V/STOL tunnel. The tests were made on a straight, rectangular wing and investigated two types of jet flap concepts: a pure jet flap with high jet deflection and a wing with blowing at the knee of a plain trailing edge flap. The tests investigated full and partial span blowing for wing aspect ratios of 8.0 and 5.5 and momentum coefficients from 0 to about 4. The total lift, drag, and pitching moment coefficients predicted by the theory were in excellent agreement with experimental values for the pure jet flap, even with the high jet deflection. The pressure coefficients on the wing, and hence the circulation lift coefficients, were underpredicted, however, because of the linearizing assumptions of the planar theory. The lift, drag, and pitching moment coefficients, as well as pressure coefficients, were underpredicted for the wing with blowing over the flap because of the failure of the theory to account for the interaction effect of the high velocity jet passing over the flap

    Collective dynamics of fermion clouds in cigar-shaped traps

    Full text link
    The propagation of zero sound in a spin-polarized Fermi gas under harmonic confinement is studied as a function of the mean-field interactions with a second Fermi gas. A local-density treatment is compared with the numerical solution of the Vlasov-Landau equations for the propagation of density distortions in a trapped two-component Fermi gas at temperature T=0.2 Tf. The response of the gas to the sudden creation of a sharp hole at its centre is also studied numerically.Comment: 15 pages, 6 figure

    Natural laminar flow experiments on modern airplane surfaces

    Get PDF
    Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes

    Wind-Tunnel Investigation of an Advanced General Aviation Canard Configuration

    Get PDF
    Wind-tunnel tests of a model of an advanced canard configuration designed for general aviation were conducted in the Langley 30- by 60-Foot Tunnel. The objective of the tests was to determine the aerodynamic stability and control characteristics of the configuration for a large range of angles of attack and sideslip at several power conditions. Analysis of the aerodynamic data indicates significant effects of power and of center-of-gravity location. For forward center-of-gravity locations, the configuration had extremely stall-resistant stability and control characteristics. For aft center-of-gravity locations and high-power conditions, the combined effects of increased pitch control and reduced longitudinal stability overpowered the stall resistance provided by the canard, which led to a high-angle-of-attack, deep-stall trim condition. Other aspects of the aerodynamic characteristics studied include the following: flow-visualization study, effect of negative angles of attack, lateral-directional characteristics, and comparison of the stall characteristics with another canard configuration
    corecore